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OPTIMIZATION OF THE STRUCTURE OF ROLLED SHELLS 

S. V. Lavrikov and A. F. Revuzhenko UDC 539.3 

i. In [I], the direct problem of determining the stressed state of a cylindrical tube 
prepared by rolling a thin flexible shell is considered. The elastiplastic model for deforma- 
tion of these structures is the following closed set of equations: 
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Here (~i, k2) is the orthogonal curvilinear coordinate system; line XI = const is directed along the 
contact of shell layers; a 2 = X1 + $X2 + R0 cos 6 is Lame parameter; $ = R 0 sin 6; R 0 is tube 
internal radius; 6 is slope of spiral X2 to circle r = R0; w?, o?. (i, j = i, 2) are displace- I. 13 . 
ment vector components and the stress tensor in coordinates (XI, 12); ~ is shear modulus; 

is Poisson's ratio. Set (i.i) are normal equilibrium equations in curvilinear coordinates; 
(1,2) are equations determining the elastic change in dimensions of an elementary volume in 
directions 11 and 12; (1.3) characterizes the overall shear strain of an element of the mate- 
rial; the first term in the right-hand part is elastic deformation of shell layers; F is slip- 
page of layers over each other. This stressed-strained state depends markedly on the form 
of function F, i.e., on the conditions at the contacts between shell layers. This situation 
may be used for optimizing the structure as a whole. 

Let the shell be intended for operation at high internal pressures when as a best per- 
formance criterion we take 

p-+ max (1.4) 

(p is the value of internal pressure). It is noted that this criterion should be fulfilled 
with prescribed internal pressure, material parameters ~, v, shell layer thickness h = 2~, 
and fulfillment of certain inequalities guaranteeing material integrity. Thus, if Eq. (1.3) 
is excluded from the closed set (i.e., F is considered as a controlling function), then best 
performance condition (1.4) may be used in order to obtain equations closing set (i.i), 
(1.2). After solving it from Eq. (1.3), where displacements and stresses are already known, 
we determine function F, which provides fulfillment of criterion (1.4). This is the general 
scheme for solving the problem. 
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2. We consider a situation when plastic deformation of the shell is impermissible: 

(2 .1)  
0 0 2  Z 

where ~s is material elastic limit; 0 < ~ < 1 is safety factor; k = ~s" Best performance 
criterion (1.4) leads to the situation that in the whole region in (2.1) equality should be 
achieved. Then problem (i.I), (1.2), (2.1) (withe sign of equality) becomes statically deter- 
minable. With normal boundary conditions 

~ 1~o = - p., ~ 0  t~=n 0 = O; ( 2 . 2 )  

( a~ + ~ I 2k$ 2 
o ~ l = - - p + k l n \  n~ ] +  a~.,-~ ~ , ~ (2 .3 )  

or in polar coordinates (r, 0) 

( a~ + ~ ~ 2 ~  2z4~ 

7 + = 

~ r = - - P + 2 k l n ( % ) ,  ~ 0 = - - p + 2 k ( l  + l n ( i ) ) ,  e r0=0.  (2 .4 )  

Distribution (2.4) is well known as a solution of the problem of plastic deformation of a 
one-piece thin-walled tube [2]. A remarkable feature of the structure in question is the fact 
that precisely this stressed state is realized with elastic deformation (in (2.1) ~ < I). 

Of course displacements will differ from both elastic and plastic displacements [2]. 
They are governed by elastic deformations of the structure as a whole and by slippages between 
layers. By substituting (2.3) in set (1.2) we obtain 
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placements of the outer tube boundary, then: 

and f u n c t i o n s  f i ( X i )  are  reduced to cons t an t s  

are arbitrary functions). If there are no dis- 
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Here A = ~R 2 - $2; R is tube external radius; XI and X2 are notations for the outer boundary 
of the region. 

Thus, expressions (2.3), (2.5), (2.7) give the solution for the original optimization 
problem, and according to (1.3) function F has the form 

C~ ( t - -~  k 
=C4a2 + ~  kC 4 =  ~ ~ , C~ =C3~- -C  1 + 2C4~2). ( 2 . 8 )  

Thus, in the  optimum s t r u c t u r e ,  the  dependence of o~2 on a 2 is  governed by the l a s t  e q u a l i t y  
of ( 2 . 3 ) ,  and r i s  governed by e q u a l i t y  (2 .8 ) .  I f  i t  i s  assumed t h a t  t h e r e  i s  only a p l a s t i c  
l u b r i c a n t ,  i . e . ,  F may only depend on o~2 , then the  l a s t  equa t ion  in (2 .3 )  and (2 .8 )  may be 
considered as a parametric relationship where a 2 enters into the role of a parameter. Then 
from (2.3) and (2.8) it follows that with corresponding ratios of shell layer thickness h and 
internal radius R0(h/R 0 < 0.5-1) behavior at the contact is close to "ideally plastic": 
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o~2 = const (Fig. i). Therefore, if the condition at the contact is selected so that 0o2 = 
const, then the structure obtained with these ratios of parameters will not differ signifi- 
cantly from the optimum. 

We consider this example. Let internal pressure P0 (P0 = 0.99Xs), and external pressure 
q0 = 0 be prescribed, and only material elastic deformation be permissible. Then the minimum 
extrenal radius of a one-piece tube R1 ---- Ro/ Ill -- Po/% (RI ---- 10Ro) For a rolled shell an 
external radius R 2 = R 0 exp (p0/(2Xs)) (R 2 ~ 1.64R0) appears adequate. It can be seen (Fig. 
2) that in the second case a structure of considerably less thickness is required. As ex- 
pected, this occurs uniformly throughout the thickness in contrast to a one-piece structure, 

' o~, and " o~ where the material most loaded is only close to the inner edge (Fig. 3, Or, Or, 
are stresses in a one-piece tube and in a rolled structure). It also follows from the last 
equations that with an unlimited increase in shell thickness its supporting capacity increases 
in an unlimited way, whereas in a one-piece tube an increase in thickness has practically no 
effect on supporting capacity. 

3. In the structures studied there is external friction of layers. A situation is typ- 
ical when external friction is dry. In equations of the continuum model, external dry friction 
enters as internal friction. Therefore taking account of the experience of solving the previ- 
ous problem, we consider a situation when Eq. (1.3) is altered to 

( %  - -  a~)12 ---- - -  I(% § ~,)12. ( 3 .  l )  

Here o 2 > o I are principal values of stress tensor; f = const is the internal friction coeffi- 
cient. Then Eqs. (i.i) and (3.1) form a closed set for stresses. Taking account of boundary 
conditions (2.2) its solution has the form 

a,,. § ~'> ' 
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(3.2) 

or in polar coordinates, 

, _ t - -  f [ r ~-2//(1+D 
, (3.3) 

Stresses (3.2) satisfy the condition o~ =tan~.o~1, where 

tan~ = / s i n 2 •  + / c o s 2 •  ] = s i n ~ / [ s i n ( 2 •  ( 3 . 4 )  

(z is angle between the circle r = const and contact lines of shell layers:tanu ~ ~/a2 = ~/ 
~--~). Thus, equality (3.1), as suggested in the original arrangement, describes the 
behavior of structures under conditions of external dry friction, but not constantly and with 
weak inhomogeneity: tan~ I/r In a real shell, external friction at the contact of layers 
is conveniently prescribed as constant. It is clear that construction of solution (3.2) and 
(3.4) from a solution with ~ -- eonst differs insignificantly, which in turn makes it possible 
to avoid solving the quite cumbersome problem with constant friction at the contact. 

Normally condition (3.1) is used in order to describe the behavior of material with in- 
ternal friction (loose materials, rocks, etc.). Consideration of adhesion in (3.1) does 
not markedly complicate the problem. For these materials coefficient f < i. In mathematical 
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models, the condition f < 1 provides a hyperbolic statement of the problem [3], and therefore 
the case of f > i is not considered, due to its physical unreality and the elliptical nature 
of the mathematical arrangement. As follows from (3.4), much more extensive possibilities 
develop in a shell. In particular, since here free parameter 0~<~/2, it is possible 
to realize structurally stressed state (3.2) with coefficient f within the limits 

0 ~ / < I/[cos 2• if ~/4 ~ M ~ ~/2; 0 ~ ] < ~, -- co < 

< ] ~< - -  t / l c o s  2• i f  0 ~< • ~< n/4. ( 3 . 5 )  

In future we limit ourselves only to equalities (3.5). 

We turn to finding the kinematics corresponding to stresses (3.2). By substituting (3.2) 
in set (1.2) we obtain 

WOl = __ pB2o#i(l+#) i 2t~ (I + l) ((I -- 2v +/)J~ -- 2/J~) + g2 (X2)c, 

. . - 7 + . f  
~" 29 (1 + I--------~ ]2 da2 --  dx da2 + 

( 3 . 6 )  

_~ i - - 2 v - - f  ~:)'1,t(1+r ) - -  S g:(~'2) di~'> -I- gl(~,l), 

where Jl = Y (a~ + ~ } aa2; ]2 = ~2)-(1+2f)/(1+f) arbitrary integration functions 

gi(Xi) (i = i, 2) are determined from boundary conditions of type (2.6). Thus, (3.2), (3.4), 
(3.6) provide the solution of direct problem (i.i), (1.2), (3.1), and from (1.3), function 
F is found relating to the solution. 

We consider the problem of optimizing and fixing external pressure q # 0. Then accord- 
ing to (3.3), 

p = q(RtRo)2s/ct+s). ( 3 . 7 )  

Apart from (3.7), from the requirements for structural integrity there emerges a limitation 
on internal pressure in the form 

p < %(I + I)~. (3.8) 

Thus, the best performance criterion in this situation means the following: it is necessary 
to find a value f = const which would satisfy inequality (3.8) and lead to the maximum p in 
equality (3.7). 

If the structure is designed to operate with q < ~s(R0/R) 2, then the best performance 
criterion leads to the situation when f + ~ and the maximum possible internal pressure in this 
case p§ s. Thus, with quite small values of q, the supporting capacity of a rolled shell differs 
little from the supporting capacity of a one-piece thick-walled tube. For the class of loading 
with q > ms(R0/R) 2 the best performance condition leads a value of f satisfying the relation- 

ship q / [ R ~2//(I+]) 
~s 1+[k~0] =I, and the maximum internal pressure p = ms(l + f)/f. 

We illustrate the results obtained with an example comparing the supporting capacity 
of two structures: a thick-walled tube (R0~r~) and a rolled shell (Ro~r~c) with 
an external elastic ring (c~r~R). Let pressure at the outer boundary be absent 
(CrIr= R = 0). Then, as is weil known [2], in the first case with retention of material integrityj 
the maximum possible pressure is 

p~ = ~ ( l  - -  R~/R2), ( 3 . 9 )  

and  p + ~s i f  R + ~ ,  i . e . ,  w i t h  an  u n l i m i t e d  i n c r e a s e  i n  t h i c k n e s s ,  i t s  s u p p o r t i n g  c a p a c i t y  
remains limited. In analyzing the supporting capacity of the second structure parameter c 
appears which can be used in addition to coefficient f, as an optimizing parameter. 

c~ l n (~ / c , )  . In the end, optimum values of c, and f, will be solutions of equations ~-~=~and],= 
2 2 ,, 

c,/(B --20~). With these f,~ and c,, the maximum possible pressure reaches a value 

~ (3 i0) p~ = ~ ( R / c ,  - t ) .  
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It is easy to show that P2 + ~ as R + ~, i.e., an unlimited increase in the thickness of 
a rolled tube with an external elastic ring increases its supporting capacity also in an unlim- 
ited way. 

It follows from (3.9) and (3.10) that if a certain internal pressure P0(P0 = 0.99 Ts) is 
fixed, then with constant R0, the minimum external radius of a one-piece tube R i = R0/~l - p0/~s 
(R i = 10 R0), whereas the required external radius for a rolled shell with an elastic ring is 
markedly less : Rz = R0 exp ((|/2)(2 ~- po/~s) ]n (2 -~ po/Ts)) (R 2 .~ 1.98Ro) . 

Thus, the results obtained indicate that the stressed state of a structure may be con- 
trolled by means of selecting the optimum reaction of layers. The material loading achieved 
is more uniform than in a one-piece tube, which makes it possible to increase the supporting 
capacity of the strucutre by a factor of two to four. 

l, 

2. 

3. 
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